Climate change

June 23, 2011

What price of Indian independence? Greenpeace under the spotlight

Filed under: Emissions Reduction, Energy Demand, Global Warming — buildeco @ 1:56 pm
Two PWRs under construction in Kudamkulam, India

Guest Post by Geoff RussellGeoff is a mathematician and computer programmer and is a member of Animal Liberation SA. His recently published book is CSIRO Perfidy. To see a list of other BNC posts by Geoff, click here.


India declared itself a republic in 1950 after more than a century of struggle against British Imperialism. Greenpeace India however, is still locked firmly under the yoke of its parent. Let me explain.

Like many Australians, I only caught up with Bombay’s 1995 change of name to Mumbai some time after it happened. Mumbai is India’s city of finance and film, of banks and Bollywood. A huge seething coastal metropolis on the north western side of India. It’s also the capital of the state of Maharashtra which is about 20 percent bigger than the Australian state of Victoria, but has 112 million people compared to Victoria’s 5.5 million. Mumbai alone has over double Victoria’s entire population. Despite its population, the electricity served up by Maharashtra’s fossil fuel power stations plus one big hydro scheme is just 11.3 GW (giga watts, see Note 3), not much more than the 8 or so GW of Victoria’s coal and gas fumers. So despite Mumbai’s dazzling glass and concrete skyline, many Indians in both rural and urban areas of the state still cook with biomass … things like wood, charcoal and cattle dung.

The modern Mumbai skyline at night

Mumbai’s wealth is a magnet for terrorism. The recent attacks in 2008 which killed 173 follow bombings in 2003 and 1993 which took 209 and 257 lives respectively. Such events are International news, unlike the daily death and illness, particularly to children, from cooking with biomass. Each year, cooking smoke kills about 256,000 Indian children between 1 and 5 years of age with acute lower respiratory infections (ALRI). Those who don’t die can suffer long term consequences to their physical and mental health. A rough pro-rata estimate would see about 23,000 children under 5 die in Maharashtra every year from cooking smoke.

The image is from a presentation by medical Professor Kirk Smith, who has been studying cooking smoke and its implications for 30 years.

Medical Prof. Kirk Smith’s summary of health impacts from cooking fires

The gizmo under the women’s right arm measures the noxious fumes she is exposed to while cooking. Kirk doesn’t just study these illnesses but has been spinning off development projects which develope and distribute cleaner cooking stoves to serve as an interim measure until electricity arrives.

The disconnect between what matters about Mumbai and India generally to an Australian or European audience and what matters locally is extreme. But a visit to the Greenpeace India website shows it is simply a western clone. In a country where real matters of life and death are ubiquitous, the mock panic infecting the front page of the Greenpeace India website at the death-less problems of the Fukushima nuclear plant seem weird at best, and obscene at worst.“Two months since Fukushima, the Jaitapur project has not been stopped“, shouts the text over one front page graphic in reference to the nuclear plant proposed for construction at Jaitapur. In those two months, nobody has died of radiation at Fukushima, but 58,000 Indian children have died from cooking smoke. They have died because of a lack of electricity. Some thousands in Maharashtra alone.

Greenpeace, now an obstructive dinosaur

The whole world loved Greenpeace back in its halcyon days protesting whaling and the atmospheric testing of nuclear weapons. Taking on whalers and the French Navy in the open sea in little rubber boats was indeed worthy of Mahatma Gandhi. But the legacy of those days is now an obstacle to Greenpeace helping to fight the much bigger environmental battles that are being fought. As Greenpeace campaigns to throw out the nuclear powered baby with the weapons testing bathwater, it seems to have forgotten the 2010 floods which displaced 20 million in the sub-continent. The Australian Council for International Development reports in May 2011 that millions are still displaced with 913,000 homes completely destroyed. Millions also have ongoing health issues with rising levels of tuberculosis, dengue fever and the impacts of extended periods of malnutrition. The economic structure of large areas has been devastated along with food and seed stocks. Areas in southern Pakistan are still under water.

This foreshadows the scale of devastation which will be delivered more frequently as global warming bites.

Brown clouds, cooking and climate change

Regardless of what you think about nuclear power, you’d think breathable air would be an environmental issue worthy of Greenpeace’s attention, but biomass cooking is missing from Greenpeace India’s campaign headings.

Biomass cooking isn’t just a consequence of poverty, it feeds into a vicious feedback loop. People, usually women and children, spend long periods collecting wood or cattle dung (see image or full study). This reduces educational opportunities, while pressure on forests for wood and charcoal degrades biodiversity. Infections from smoke, even if not fatal, combine with the marginal nutrition produced by intermittent grain shortages to yield short and sickly lifespans, while burning cattle dung wastes a resource far more valuable as fertiliser.

In 2004, a World Health Organisation Report estimated that, globally, 50 percent of all households and 90 percent of rural households cook with biomass. In India, they estimated that 81 percent of Indian households cook with biomass. That figure will have dropped somewhat with significant growth in Indian power generation over the past decade but will still be high.

Biomass cooking isn’t only a health issue, but a significant player in climate change. Globally, the black carbon in the smoke from over 3 billion people cooking and boiling water daily with wood, charcoal or cattle dung forms large brown clouds with regional and global impacts.

Maharashtra’s nuclear plans

Apart from a reliable food supply, the innovation that most easily distinguishes the developed and developing world is electricity. It’s the shortage of this basic commodity that kills those 256,000 Indian children annually. Electric cooking is clean and slices through the poverty inducing feedback loop outlined above. Refrigeration reduces not just food wastage but also food poisoning.

If you want to protect forests and biodiversity as well as children in India (and the rest of the developing world), then electricity is fundamental. Higher childhood survival is not only a worthy goal in itself, but it is also critical in reducing birthrates.

Apart from a Victorian sized coal fired power supply the 112 million people of Maharashtra also have the biggest nuclear power station in India. This is a cluster of two older reactors and two newer ones opened in 2005 and 2006. The newer reactors were constructed by Indian companies and were completed inside time and below budget. The two old reactors are relatively small, but the combined power of the two newer reactors is nearly a giga watt. India’s has a rich mathematical heritage going back a thousand years which underpins a sophisticated nuclear program. Some high-level analytic techniques were known in India hundreds of years before being discovered in Europe.

India has another nuclear power station planned for Maharashtra. And much bigger. This will be a half a dozen huge 1.7 GW French EPR reactors at Jaitapur, south of Mumbai. On its own, this cluster will surpass the entire current output of the state’s coal fired power stations. The project will occupy 968 hectares and displace 2,335 villagers (Wikipedia). How much land would solar collectors occupy for an Andasol like concentrating solar thermal system? About 40 times more land and either displace something like 80,000 people or eat into India’s few wildlife habitats.

If Greenpeace succeeds in delaying the Jaitapur nuclear plant, biomass cooking in the area it would have serviced will continue together with the associated suffering and death of children. It’s that simple. Greenpeace will have direct responsibility no less than if it had bombed a shipment of medical supplies or prevented the decontamination of a polluted drinking well.

Jaitapur and earthquakes

In the wake of the reactor failures at Fukushima which killed nobody, Greenpeace globally and Greenpeace India are redoubling their efforts to derail the new Jaitapur nuclear plant. The Greenpeace India website (Accessed 9th May) carries a graphic of the Fukushima station with covering text:

The Jaitapur nuclear plant in India is also in an earthquake prone zone. Do we want to take the risk? The people of Jaitapur don’t.

The Greenpeace site claims that the chosen location for the Jaitapur power plant is in a Seismic Zone 4 with a maximum recorded quake of 6.3 on the Richter scale. Accepting this as true (Wikipedia says its Zone 3), should anybody be afraid?

“Confident” and “relaxed” are far more appropriate responses for anybody who understands the Richter scale. It’s logarithmic. Base 10.

Still confused? A quake of Richter scale size 7 is 10 times more powerful than one of size 6. A quake of size 8 is 100 times more powerful than one a size 6. And a scale 9 quake, like Japan’s monster on March the 11th, is a thousand times more powerful than a quake of size 6. The 40 year old Fukushima reactors came through this massive quake with damage but no deaths. The reactors shutdown as they were designed to and subsequent problems, still fatality free and caused primarily by the tsunami, would not have occurred with a more modern reactor. We haven’t stopped building large buildings in earthquake zones because older designs failed.

Steep cliffs and modern reactor designs at Jaitapur will mean that tsunamis won’t be a problem. All over the world people build skyscrapers in major earthquake zones. The success of the elderly Fukushima reactors in the face of a monster quake is cause for relief and confidence, not blind panic. After all, compared to a skyscraper like Taipei 101, designing a low profile building like a nuclear reactor which can handle earthquakes is a relative doddle.

Despite being a 10 on the media’s self-proclaimed Richter scale, subsequent radiation leaks and releases at Fukushima will cause few if any cancers. It’s unlikely that a single worker will get cancer, let alone any of the surrounding population. This is not even a molehill next to the mountain of cancers caused by cigarettes, alcohol and red meat. The Fukushima evacuations are terrible for the individuals involved but even 170,000 evacuees pales beside the millions of evacuations caused by increasing climate based cataclysms.

Greenpeace India haunted by a pallid European ghost

Each year that the electricity supply in Maharashtra is inadequate, some 23,000 children under the age of 5 will die. They will die this year. They will die next year. They will keep dying while the electricity supply in Maharashtra is inadequate. While the children die, their parents will mourn and continue to deplete forests for wood and charcoal. They will continue to burn cattle dung and they will have more children.

A search of the Greenpeace India web pages finds no mention of biomass cooking. No mention of its general, environmental, climate or health impacts. But there are 118 pages referencing Chernobyl.

At Chernobyl, 237 people suffered acute radiation sickness with 28 dying within 4 months and another 19 dying between 1987 and 2006. As a result of the radiation plume and people who were children at the time drinking contaminated milk, there were 6,848 cases of thyroid cancer between 1991 and 2005. These were treated with a success rate of about 98% (implying about 140 deaths). Over the past 25 years there have also been some thousands of other cancers that might, or might not, have been caused by Chernobyl amongst the millions of cancers caused by factors that Greenpeace doesn’t seem the least worried by, things like cigarettes, alcohol and red meat.

On the other hand, each year that India’s electricity supply is inadequate will see about 256,000 childhood deaths. As an exercise, readers may wish to calculate the number of Indian children who have died due to inadequate cooking fuels over the past 25 years and compare it with the 140 children who died due to the Chernobyl accident. Every one of those Indian deaths was every bit as tragic as every one of those Chernobyl deaths.

Greenpeace India is dominated by the nuclear obsession of its parent organisation. On the day when the Greenpeace India blog ran a piece about 3 Japanese workers with burned feet, nearly a thousand Indian children under 5 will have died from cooking stove smoke. They didn’t get a mention on that day, or any other.

Why is Greenpeace India haunted by this pallid European ghost of an explosion 25 years ago in an obsolete model of reactor in Ukraine? Why is Greenpeace India haunted by the failure of a 40 year old Fukushima reactor without a single fatality? This is a tail wagging not just a dog, but the entire sled team.

Extreme scenarios

It’s time Greenpeace India looked rationally at Indian choices.

Should they perhaps copy the Germans whose 15 year flirtation with solar power hasn’t made the slightest dent in their fossil fuel use? (Note 2) It may simply be that the Germans are technologically incompetent and that things will go better in India. Perhaps the heirs of Ramanujan will succeed where the heirs of Gauss have failed. Alternatively, should India copy the Danes whose wind farms can’t even half power a tiny country of 5.4 million?

India’s current electricity sources. Cooking stoves not included! ‘Renewables’ are predominantly biomass thermal power plants and wind energy, with some solar PV.

India is well aware that she only has a four or five decades of coal left, but seems less aware, like other Governments, that atmospheric CO2 stabilisation must be at 350 ppm together with strict reductions in short lived forcings like black carbon and methane and that these constraints require her, like Australia and everybody else, to leave most of that coal in the ground. But regardless of motivation, India needs both a rebuild and expansion of her energy infrastructure over the next 50 years.

Let’s consider a couple of thumbnail sketches of two very different extreme scenarios that India may consider.

The first scenario is to phase out all India’s coal, oil and gas electricity generation facilities and replace them with nuclear. Currently these fossil fuel facilities generate about 900,000 GWh (giga watt hours) of electricity. Replacing them with 1,000 nuclear reactors at 1.7 GW each will generate about 14 million GWh annually. This is about 15 times the current electricity supply and roughly similar to Victoria’s per capita electricity supply. It’s a fairly modest target because electricity will be required to replace oil and gas in the future. I also haven’t factored in population growth in the hope that energy efficiency gains will compensate for population growth and also with confidence that electrification will reduce population growth. Nevertheless, this amount of electricity should be enough to catapult India into the realms of the developed world.

These reactors should last at least 60 years and the electricity they produce will prevent 256,000 children under 5 dying every year. Over the lifetime of the reactors this is about 15.4 million childhood deaths. But this isn’t so much about specific savings as a total transformation of India which will see life expectancy rise to developed world levels if dangerous climate change impacts can be averted and a stable global food supply is attained.

Build the reactors in groups of 6, as is proposed at Jaitapur, and you will need to find 166 sites of about 1000 hectares. The average density of people in India is about 3 per hectare, so you may need to relocate half a million people (3000 per site). This per-site figure is close to the actual figure for Jaitapur.

There are currently over 400 nuclear reactors operating world wide and there has been one Chernobyl and one Fukushima in 25 years. Nobody would build a Chernobyl style reactor again, but let’s be really silly and presume that over 60 years we had 2 Chernobyls and 2 Fukushimas in India. Over a 60 year period this might cost 20,000 childhood cancers with a 98% successful treatment rate … so about 400 children might die. There may also be a few thousand adult leukemias easily counterbalanced by a vast amount of adult health savings I haven’t considered.

The accidents would also result in 2 exclusion zones of about 30 kilometers in radius. Effectively this is 2 new modestly sized wildlife parks. We know from Chernobyl that wildlife will thrive in the absence of humans. With a 30km radius, the two exclusion zone wildlife parks would occupy 282,743 hectares.

If you are anti-nuclear, this is a worst case scenario. The total transformation of India into a country where children don’t die before their time in vast numbers.

This is a vision for India that Greenpeace India is fighting tooth and nail to avoid.

As our alternative extreme scenario, suppose India opted for concentrating solar thermal power stations similar to the Spanish Andasol system to supply 14 million GWh annually. Each such unit supplies about 180 GWh per year, so you would need at least 78,000 units with a solar collector area of 3.9 million hectares, equivalent to 13 of our hypothesized exclusion zone wildlife parks from the accidents. But, of course, these 3.9 million hectares are not wildlife parks. I say “at least 78,000″ units because the precise amount will depend on matching the demand for power with the availability of sunshine. Renewable sources of energy like wind and solar need overbuilding to make up for variability and unpredictability of wind and cloud cover. The 78,000 Andasol plants each come with 28,000 tonnes of molten salt (a mix of sodium nitrate and potassium nitrate) at 400 degrees centigrade which acts as a huge battery storing energy when the sun is shining for use when it isn’t. Local conditions will determine how much storage is required. The current global production of ordinary sodium chloride is about 210 million tonnes annually. Producing the 2.1 billion tonnes of special salt required for 78,000 Andasols will be difficult, as will the production of steel and concrete. Compared to the nuclear reactors, you will need about 15 times more concrete and 75 times more steel.

Build the 78,000 Andasols in groups of 78 and you have to find 1000 sites of about 4,000 hectares. Alternatively you could use 200 sites of 20,000 hectares. The average density of people in India is over 3 per hectare, so you may need to relocate perhaps 12 million people. If you were to use Solar photovoltaic in power stations (as opposed to rooftops), then you would need more than double the land (Note 4) and have to relocate even more people.


In a previous post, I cited an estimate of 1 tonne of CO2 per person per year as a sustainable greenhouse gas emissions limit for a global population of 8.9 billion. How do our two scenarios measure up?

A current estimate of full life cycle emissions from nuclear power is 65g/kWh (grams per kilo-watt-hour) of CO2, so 14 million GWh of electricity shared between 1.4 billion Indians is about 0.65 tonnes per person annum, which allows 0.35 tonnes for food and other non-energy greenhouse gas emissions. So not only is it sustainable, it’s in the ball park as a figure we will all have to live within.

The calculations required to check if this amount of electricity is sustainable from either solar thermal or solar PV are too complex to run through here, but neither will be within budget if any additional fossil fuel backup is required. Solar PV currently generates about 100 g/kWh (p.102) under Australian conditions, so barring technical breakthroughs, is unsustainable, unless you are happy not to eat at all. Solar thermal is similar to nuclear in g-CO2/kWh, except that the required overbuilding will probably blow the one tonne budget.

The human cost of construction time

The relative financial costs of the two scenarios could well have a human cost. For example, more money on energy usually means less on ensuring clean water. But this post is already too long. However, one last point needs to be made about construction time. I strongly suspect that while building 1000 nuclear reactors will be a vast undertaking, it is small compared to 78,000 Andasols. Compare the German and French experiences of solar PV and nuclear, or simply think about the sheer number and size of the sites required. The logistics and organisational time could end up dominating the engineering build time. We know from various experiences, including those of France and Germany, that rapid nuclear builds are physically plausible and India has demonstrated this with its own reactor program.

If I’m right and a solar (or other renewable) build is slower than a nuclear build, then the cost in human suffering will easily dwarf anything from any reasonable hypotheses on the number of accidents. Can we put a number on this? If we arbitrarily assume a pro-rata reduction in childhood deaths in proportion to the displacement of biomass cooking with electricity, then we can compare a phase-out over 10 five-year plans with one taking say 11. So at the end of each 5 year plan a chunk of electricity comes on line and the number of cooking smoke deaths drops. At the end of the process the number of deaths from cooking smoke is 0. It’s a decline in a series of 10 large or 11 slightly smaller steps. Plug in the numbers and add up the total over the two time periods and the difference is … 640,000 deaths in children under 5. Construction speed matters.

In conclusion

How do my back-of-an-envelope scenarios compare with India’s stated electricity development goals? According to India’s French partner in the Jaitapur project, Areva, India envisages about half my hypothesized electrical capacity being available by 2030, so a 50 year nuclear build plan isn’t ridiculous provided floods or failed monsoons don’t interfere unduly.

As for the safety issues and my hypothesised accidents, it doesn’t matter much what kind of numbers you plug in as a consequence of the silly assumption of a couple of Chernobyls. They are all well and truly trumped: firstly, by the increase in health for Indian children, secondly by the reforestation and biodiversity gains as biomass cooking declines, thirdly by the reduction in birth rates as people get used to not having their children die, and lastly, by helping us all have a fighting chance of avoiding the worst that climate change might deliver.

It’s time Greenpeace India told its parent organisation to shove off. It’s time Greenpeace India set its own agenda and put the fate of Indian children, the Indian environment and the planet ahead of the ideological prejudices of a parent organisation which has quite simply lost the plot.

Note 1: Nuclear Waste: What about the nuclear waste from a thousand reactors? This is far less dangerous than current levels of biomass cooking smoke and is much more easily managed. India has some of the best nuclear engineers in the business. They are planning thorium breeder reactors which will result in quite small amounts of waste, far smaller and more manageable than the waste from present reactors. Many newer reactor designs can run on waste from the present generation of reactors. These newer reactors are called IFR (Integral Fast Reactor) and details can be found on

Note 2: German Solar PV: Germany installed 17 GW of Solar photo voltaic (PV) power cells between 2000 and 2010 and in 2010 those 17 GW worth of cells delivered 12,000 GWh of energy. If those cells were running in 24×7 sunshine, they would have delivered 17x24x365 = 149 GWh of energy. So their efficiency is about 8 percent (this is usually called their capacity factor. A single 1.7GW nuclear reactor can produce about 1.7x24x365x0.9=13,402 GWh in a year (the 0.9 is a reasonable capacity factor for nuclear … 90 percent). Fossil fuel use for electricity production in Germany hasn’t changed much in the past 30 years with most of the growth in the energy supply being due to the development of nuclear power in Germany during the late 70s and 80s.

Note 3: Giga watts, for non technical readers.: The word billion means different things in different countries, but “giga” always means a thousand million, so a giga watt (GW for short) is a useful unit for large amounts of power. A 100-watt globe takes 100 watts of power to run. Run it for an hour and you have used 100 watt-hours of energy. Similarly, a GWh, is a giga watt of power used for an hour, and this is a useful unit for large amounts of energy. If you want to know all about energy units for a better understanding of BNC discussions, here’s Barry’s primer

Note 4: Area for Solar PV. German company JUWI provides large scale PV systems. Their 2 MW (mega watt system) can supply about 3.1 GWh per year and occupies 2 hectares. To supply a similar amount of energy to Andasol would need 180/3.1=58 units occupying some 116 hectares


June 6, 2011

Renewables and efficiency cannot fix the energy and climate crises (part 2)

by Barry Brook

This post continues directly on from Part 1 (please read that if you’ve not already done so!). I also note the flurry of interest in the new IPCC WGIII special report on renewable energy prospects through to 2050. I will have more to say on this in an upcoming post, but in short, it fails to address — with any substance — any of the significant problems I describe below, or in the previous post. What a disappointment!


Renewables and efficiency cannot fix the energy and climate crises (part 2)

Renewable energy cannot provide reliable 24-hour, 7-day-a-week  power to meet baseload demand

The minimum amount of power that a city or country demands usually occurs at night (when most people are asleep); this is called the electricity ‘baseload’. Some have claimed that it is a fallacy to argue that all of this demand is needed, because utilities tend to charge cheap (‘off peak’) rates during these low-use periods, to encourage more uptake (by everything from factory machinery to hot water systems). This is because some types of power stations (e.g., coal and nuclear) are quite expensive to build and finance (with long terms to pay off the interest), but fairly cheap to run, so the utility wants to keep them humming away 24 hours a day to maximise returns. Thus, there is some truth to this argument, although if that energy is not used at night, extra must instead be supplied in the day.

Some critical demand, however, never goes away – the power required to run hospitals, police stations, street lights, water and sewerage pumping stations,  refrigerators and cold storage, transport (if we are to use electric vehicles), and so on. If the power is lost to these services, even for a short while, chaos ensues, and the societal backlash after a few such events is huge. On the other side of the energy coin, there are times when huge power demands arise, such as when everyone gets home from work to cook their meals and watch television, or when we collectively turn on our air conditioners during a heatwave. If the energy to meet this peak demand cannot be found, the result can be anything from a lot of grumpy people through to collapse of the grid as rolling blackouts occur.

Two core limitations of wind, solar and most other renewable systems is that: (i) they are inherently variable and are prone to ‘gambler’s ruin‘ (in the sense that you cannot know, over any planning period, when long stretches of calm or cloudy days will come, which could bring even a heavily over-compensated system to its knees), and (ii) they are not ‘dispatchable’. They’ll provide a lot of power some of the time, when you may or may not need it, and little or none at other times, when you’ll certainly need some, and may need a lot. In short, they can’t send power out on demand, yet, for better or worse, this is what society demands of an electricity system. Okay, but can these limitations be overcome?

Large-scale renewables require massive ‘overbuilding’ and so are not cost competitive

The three most commonly proposed ways to overcome the problem of intermittency and unscheduled outages are: (i) to store energy during productive times and draw on these stores during periods when little or nothing is being generated; (ii) to have a diverse mix of renewable energy systems, coordinated by a smart electronic grid management system, so that even if the wind is not blowing in one place, it will be in another, or else the sun will be shining or the waves crashing; and (iii) to have fossil fuel or nuclear power stations on standby, to take up the slack when needed.

The reality is that any of these solutions are grossly uneconomic, and even if we were willing and able to pay for them, the result would be an unacceptably unreliable energy supply system. Truly massive amounts of energy would need to be stored to keep a city or country going through long stretches of cloudy winter days (yes, these even occur in the desert) or calm nights with little wind and no sun, yet energy storage (batteries, chemical conversion to hydrogen or ammonia, pumped hydropower, compressed air), even on a small scale, is currently very expensive. A mix of different contributions (solar, wind, wave, geothermal) would help, but then we’d need to pay for each of these systems, built to a level that they could compensate for the failure of another.

What’s more, in order to deliver all of our regular power demand whilst also charging up the energy stores , we would have to ‘overbuild’ our system many times, adding to the already prohibitive costs. As a result, an overbuilt system of wind and solar would, at times, be delivering 5 to 20 times our power demand (leading to problems of ‘dumping’ the excess energy that can’t be used or stored quickly enough or in sufficient quantity), and at other times, it would deliver virtually none of it.

If you do some modelling to work through the many contingencies, you find that a system which relies on wind and/or solar power, plus large-scale energy storage and a geographically dispersed electricity transmission network to channel power to load centres, would seem to be 10 to 40 times more expensive than an equivalent nuclear-powered system, and still less reliable. The cost to avoid 1 tonne of carbon dioxide would be >$800 with wind power compared with $22 with nuclear power.

The above critiques of renewable energy might strike some readers as narrow minded or deliberately pessimistic. Surely, isn’t it just a matter of prudent engineering and sufficient integration of geographically and technologically diverse systems, to overcome such difficulties? Alas, no! Although I only have limited space for this topic in this short post, let me grimly assure you that the problem of ‘scaling up’ renewable energy to the point where it can reliably meet all (or even most) of our power needs, involves solving a range of compounding, quite possibly insuperable, problems. We cannot wish these problems away — they are ‘the numbers’, ‘the reality’.

Economic and socio-political realities

Supporters of ’100% renewable energy’ maintain that sunlight, wind, waves and plant life, combined with vast improvements in energy efficiency and energy conservation leading to a flattening or reduction in total energy demand, are the answer.  This is a widespread view among environmentalists and would be perfectly acceptable to me if the numbers could be made to work. But I seriously doubt they can.

The high standard of living in the developed world has been based on cheap fossil (and nuclear) energy. While we can clearly cut back on energy wastage, we will still have to replace oil and gas. And that means a surge in demand for electricity, both to replace the energy now drawn from oil and gas and to meet the additional demand for power from that third of the world’s people who currently have no electricity at all.

Critics do not seem to understand – or refuse to acknowledge – the basis of modern economics and the investment culture. Some dream of shifts in the West and the East away from consumerism. There is a quasi-spiritualism which underpins such views. Yet at a time of crisis, societies must be ruthlessly practical in solving their core problems or risk collapse. Most people will fight tooth-and-nail to avoid a decline in their standard of living. We need to work with this, not against it. We are stuck with the deep-seated human propensity to revel in consuming and to hope for an easier life. We should seek ways to deliver in a sustainable way.

A friend of mine, the Californian entrepreneur Steve Kirsch, has put the climate-energy problem succinctly:

The most effective way to deal with climate change is to seriously reduce our carbon emissions. But we’ll never get the enormous emission reductions we need by treaty. Been there, done that – it’s not going to happen. If you want to get emissions reductions, you must make the alternatives for electric power generation cheaper than coal. It’s that simple. If you don’t do that, you lose.

Currently, no non-fossil-fuel energy technology has achieved this. So what is stopping nations replacing coal, oil and gas infrastructure with renewable energy? It is not (yet) because of any strong, society-wide opposition to a switch to renewables. No, it is economic uncertainty, technological immaturity, and good old financial risk management. Despite what ’100% renewables’ advocates would lead you to believe, it is still far from certain in what way the world will pursue a low-carbon future. You have only to look at what’s happening in the real world to verify that.

I’ve already written about fast-growing investment in nuclear energy in Asia. China, for instance, has overcome typical first-of-a-kind engineering cost overruns by building more than 25 reactors at the same time, in a bid to bring costs to, or below, those of coal.

In December 2009, there was a telling announcement from the United Arab Emirates (UAE), which wish to sell their valuable natural gas to the export market. Within the next few years, the UAE face a six-gigawatt increase in demand for electricity, which includes additional power required by an upgraded desalination program. Despite being desert-based with a wealth of solar resources, the UAE decided not to build large-scale solar power plants (or any other renewable technology). In terms of economics and reliability, the numbers just didn’t stack up. Instead, they have commissioned a South Korean consortium to build four new generation III+ APR-1400 reactors, at a cost of $3,500 a kilowatt installed – their first ever nuclear power plants.


Nuclear power, not renewable energy or energy efficiency, will probably end up being the primary global solution to the climate and energy crises. This is the emergent result of trying to be honest, logical and pragmatic about what will and will not work, within real-world physical, economic and social constraints.

If I am wrong, and non-hydro and non-combustible renewables can indeed rise to the challenge and ways can be found to overcome the issues I’ve touched on in these two posts, then I will not complain. After all, my principal goal — to replace fossil fuels with sustainable and low-carbon alternative energy sources — would have been met. But let’s not play dice with the biosphere and humanity’s future on this planet, and bet everything on such wishful thinking. It would be a risky gamble indeed.

Renewables and efficiency cannot fix the energy and climate crises (part 1)

 by Barry Brook
We must deal simultaneously with the energy-resource and climate-change pincers

The modern world is caught in an energy-resource and climate-change pincer. As the growing mega-economies of China and India strive to build the prosperity and quality of life enjoyed by citizens of the developed world, the global demand for cheap, convenient energy grows rapidly. If this demand is met by fossil fuels, we are headed for an energy supply and climate disaster. The alternatives, short of a total and brutal deconstruction of the modern world, are nuclear power and renewable energy.

Whilst I support both, I now put most of my efforts into advocating nuclear power, because: (i) few other environmentalists are doing this, whereas there are plenty of renewable enthusiasts  (unfortunately, the majority of climate activists seem to be actively anti-nuclear), and (ii) my research work on the energy replacement problem suggests to me that nuclear power will constitute at least 75 % of the solution for displacing coal, oil and gas.

Prometheus, who stole fire from the Gods and gave it to mortal man

In my blog, I argue that it’s time to become “Promethean environmentalists”. (Prometheus, in Greek mythology, was the defiantly original and wily Titan who stole fire from Zeus and gave it to mortals, thus improving their lives forever.) Another term, recently used by futurist Stewart Brand, is “Ecopragmatists”. Prometheans are realists who shun romantic notions that modern governments might guide society back to an era when people lived simpler lives, or that a vastly less consumption-oriented world is a possibility. They seek real, high-capacity solutions to environmental challenges – such as nuclear power – which history has shown to be reliable.

But I reiterate — this strong support for nuclear does NOT make me ‘anti-renewables’ (or worse, a ‘renewable energy denier‘, a thoroughly unpleasant and wholly inaccurate aspersion). Indeed, under the right circumstances, I think renewables might be able to make an important contribution (e.g., see here). Instead, my reticence to throw my weight confidently behind an ’100% renewable energy solution’ is based on my judgement that such an effort would prove grossly insufficient, as well as being plain risky. And given that the stakes we are talking about are so high (the future of human society, the fates of billions of people, and the integrity of the biosphere), failure is simply not an option.

Below I explain, in very general terms, the underlying basis of my reasoning. This is not a technical post. For those details, please consult the Thinking Critically About Sustainable Energy (TCASE) series — which is up to 12 parts, and will be restarted shortly, with many more examples and calculations.


Renewables and efficiency cannot fix the energy and climate crises (part 1)

Boulton and Watt’s patented steam engine

The development of an 18th century technology that could turn the energy of coal into mechanical work – James Watt’s steam engine – heralded the dawn of the Industrial Age. Our use of fossil fuels – coal, oil and natural gas – has subsequently allowed our modern civilisation to flourish. It is now increasingly apparent, however, that our almost total reliance on these forms of ancient stored sunlight to meet our energy needs, has some severe drawbacks, and cannot continue much longer.

For one thing, fossil fuels are a limited resource. Most of the readily available oil, used for transportation, is concentrated in a few, geographically favoured hotspots, such as the Middle East. Most credible analysts agree that we are close to, or have passed, the point of maximum oil extraction (often termed ‘peak oil’), thanks to a century of rising demand. We’ve tapped less of the available natural gas (methane), used mostly for heating and electricity production, but globally, it too has no more than a few more decades of significant production left before supplies really start to tighten and prices skyrocket, especially if we ‘dash for gas’ as the oil wells run dry. Coal is more abundant than oil or gas, but even it has only a few centuries of economically extractable supplies.

Then there is climate change and air pollution. The mainstream scientific consensus is that emissions caused by the burning of fossil fuels, primarily carbon dioxide (CO2), are the primary cause of recent global warming. We also know that coal soot causes chronic respiratory problems, its sulphur causes acid rain, and its heavy metals (like mercury) induce birth defects and damage ecological food chains. These environmental health issues compound the problem of dwindling fossil fuel reserves.

Clearly, we must unhitch ourselves from the fossil-fuel-based energy bandwagon – and fast.

Meeting the growing demand for energy and clean water in the developing world

In the developed world (US, Europe, Japan, Australia and so on), we’ve enjoyed a high standard of living, linked to a readily available supply of cheap energy, based mostly on fossil fuels. Indeed, it can be argued that this has encouraged energy profligacy, and we really could be more efficient in the mileage we get out of our cars, the power usage of our fridges, lights and electrical appliances, and in the design of our buildings to reduce demands for heating and cooling. There is clearly room for improvement, and sensible energy efficiency measures should be actively pursued.

In the bigger, global picture, however, there is no realistic prospect that we can use less energy in the future. There are three obvious reasons for this:

1) Most of the world’s population is extremely energy poor. More than a third of all humanity, some 2.5 billion people, have no access to electricity whatsoever. For those that do, their long-term aspirations for energy growth, to achieve something equating that used today by the developed world, is a powerful motivation for development. For a nation like India, with over 1 billion people, that would mean a twenty-fold increase in per capita energy use.

2) As the oil runs out, we need to replace it if we are to keep our vehicles going. Oil is both a convenient energy carrier, and an energy source (we ‘mine’ it).  In the future, we’ll have to create our new energy carriers, be they chemical batteries or oil-substitutes like methanol or hydrogen. On a grand scale, that’s going to take a lot of extra electrical energy! This counts for all countries.

3) With a growing human population (which we hope will stabilise by mid-century at less than 10 billion) and the burgeoning impacts of climate change and other forms of environmental damage, there will be escalating future demands for clean water (at least in part supplied artificially, through desalination and waste water treatment), more intensive agriculture which is not based on ongoing displacement of natural landscapes like rainforests, and perhaps, direct geo-engineering to cool the planet, which might be needed if global warming proceeds at the upper end of current forecasts.

In short, the energy problem is going to get larger, not smaller, at least for the foreseeable future.

Renewable energy is diffuse, variable, and requires massive storage and backup

Let’s say we aim to have largely replaced fossil fuels with low-carbon substitutes by the year 2060 — in the next 50 years or so. What do we use to meet this enormous demand?

Nuclear power is one possibility, and is discussed in great detail elsewhere on this website. What about the other options? As discussed above, improved efficiency in the way we use energy offers a partial fix, at least in the short term. In the broader context, to imagine that the global human enterprise will somehow manage to get by with less just doesn’t stack up when faced with the reality of a fast developing, energy-starved world.

Put simply, citizens in Western democracies are simply not going to vote for governments dedicated to lower growth and some concomitant critique of consumerism, and nor is an authoritarian regime such as in China going to risk social unrest, probably of a profound order, by any embrace of a low growth economic strategy. As such, reality is demanding, and we must carefully scrutinise the case put by those who believe that renewable energy technologies are the answer.

Solarpark Mühlhausen in Bavaria. It covers 25 ha and generates 0.7 MW of average power (peak 6.3 MW)

The most discussed ‘alternative energy’ technologies (read: alternative to fossil fuels or nuclear) are: harnessing the energy in wind, sunlight (directly via photovoltaic panels or indirectly using mirrors to concentrate sunlight), water held behind large dams (hydropower), ocean waves and tides, plants, and geothermal energy, either from hot surface aquifers (often associated with volcanic geologies) or in deep, dry rocks. These are commonly called ‘renewable’ sources, because they are constantly replenished by incoming sunlight or gravity (tides and hot rocks) and radioactivity (hot rocks). Wind is caused by differences in temperature across the Earth’s surface, and so comes originally from the sun, and oceans are whipped up by the wind (wave power).

Technically, there are many challenges with economically harnessing renewable energy to provide a reliable power supply. This is a complex topic – many of which are explored in the TCASE series – but here I’ll touch on a few of the key issues. One is that all of the sources described above are incredibly diffuse – they require huge geographical areas to be exploited in order to capture large amounts of energy.

For countries like Australia, with a huge land area and low population density, this is not, in itself, a major problem. But it is a severe constraint for nations with high population density, like Japan or most European nations. Another is that they are variable and intermittent – sometimes they deliver a lot of power, sometimes a little, and at other times none at all (the exception here is geothermal). This means that if you wish to satisfy the needs of an ‘always on’ power demand, you must find ways to store large amounts of energy to cover the non-generating periods, or else you need to keep fossil-fuel or nuclear plants as a backup. That is where the difficulties really begin to magnify… To be continued…


Part 2 will cover the ‘fallacy of the baseload fallacy’, ‘overbuilding’, costs, and evolution of real-world energy systems.

January 6, 2011

OzEnergy – The second story

Filed under: Emissions Reduction, Energy Demand, Renewable Energy — buildeco @ 10:27 am

By Barry Brook

The project continues to hum away in the background, building momentum.

After much necessary background work, including data collation, website construction, preliminary wheel kicking and a lot of hard thinking (!), we are moving onto some serious analysis and modelling. But scenarios need storylines to hang off. Our first story was about scoping the problem. The second story — reproduced below — is about understanding. This is an exploration framework rather than a real-world proposal. To me, with an extensive experience in working with biological systems, the evolutionary approach we take here appeals. See what you think.

Francis and I would appreciate your critical feedback, either in the comments below or on the relevant OzEA page. Please consider both sites. And remember, OzEA is an experiment, with the tea room being a portal into developments. We always welcome your feedback, on any aspect of the site and its outputs.


The Second Story – Understanding the Problem


In the beginning was The First Story, followed in recent months by round one development through the menu bar (data, analysis, models…). This story ushers in round two.

To briefly reintroduce OzEA: the big picture is a global need for much increased electricity production as we progress through this century. Much increased fossil fuel use to achieve this is problematic given that current human impact on the carbon cycle is widely believed to be impacting on climate. While nuclear power is an alternative to coal and gas, issues around Nuclear Power, or the science of Climate Change, are not discussed here. OzEA seeks to be a broad church; we put our energies into empirical, high level and open analysis of how a high penetration of renewable electricity might be achieved in the Australian context.

In this Second Story we adopt ’50% by 2030′ renewable electricity as the basis for ongoing work into 2011. Demand management (smart grids) and system evolution are matters that will be central to the integration of renewables, and these are discussed in what follows. Work through to years end is to model the power output from large-scale scenarios of geographically distributed wind and solar power plants. This will provide a solid base for further rational analysis of renewable variability.

The fifty percent renewables by 2030 approach

Adopting 50% renewable penetration by 2030 as a baseline gives structure and coherence to our work plans. In reality Australia is scheduled to have around 20% renewable electricity in 2020 (predominately from wind), driven by the federal governments LRET scheme. The purpose of a 50% target is to drive analysis and thinking, rather than an engineering proposal.

While wind is currently the most mature and economical of the large scale renewable technologies, its variability will eventually make further deployment self limiting; more wind farms = more electricity when the wind blows => depressed prices in the wholesale market. In turn, electricity from solar power can become a more valuable renewable source. The key focus is thus to examineconfigurations of wind and solar that reduce variability and usefully match with demand. (Note: solar = large-scale concentrated solar thermal (CSP); we hold photovoltaics to the margin for now).

Working at the hour-to-hour level we use historical wind and solar data to model ~10 GW average of electricity supply from these sources. Combined with historical demand data, this allows calculation of a ‘demand remainder’ (demand minus renewable supply). The first, naive, approach is to supply this remainder by conventional generators (with a little support from available pumped storage hydro), and to assume that Smart Grid Demand Management does no more than smooth out sub-hour variability and keep demand peaks from growing above current levels.

The naivety above is to suppose demand data from the past can represent demand in the years to come. While past weather data is a good template for the future, the demand can and will change as the electricity system grows and evolves. Hence, the ‘demand remainder’ that we calculate will require a more thoughtful interpretation than simply power required from fossil fuel generators.

Supply and demand; transmission and distribution

These four components provide a template for understanding our electricity system. The transmission network is the backbone that connects region to region, state to state, connecting the power plants that supply electricity. This electricity is taken at substations and feed, at lower voltages, into distribution networks (the poles and wires on our residential streets). Around 25% of overall Demand is residential, with the commercial and industrial sectors making up the balance.

The market operators ensure that, with very high probability, the system remains in balance from second to second; i.e., that supply meets demand. While electricity can be stored economically in the form of pumped storage hydro, this capacity is limited and mostly demand is meet by ramping supply up and down as needed (see The Electricity System discussion).

Peak loads, especially driven by air-conditioner use, present a particular problem for the electricity system. While residential use is one quarter of demand as a blunt average, it is a much higher portion on hot afternoons. Distribution networks in particular can be pushed to their limits, and system planners are faced with the prospect of costly upgrades to these networks. Peaking loads create a real need for mechanisms that can curtail or shift demand, otherwise expensive upgrades are needed in order to provide a much higher network capacity – to a level that is only needed for a small fraction of the year.

Analysis of large-scale renewable integration is necessarily intertwined with peak demand and network development issues, as these pressures are driving system evolution now. From a renewables perspective, the pressure to manage extremes on the demand side crosses over with managing variation on the supply side. This point bears reading again.

Accounting the variability

Power from wind and solar can be very variable; sometimes these sources produce little if any power at all. This is an enormous impediment to making large investments in these renewable power sources. At the simplest level renewable energy can be accounted as free fuel. That is, the system continues to require the same number of coal and gas power plants as before, to cover the times when the wind isn’t blowing and the sun isn’t shining. The saving is on the fuel (and any associated emissions), however, the cost of the renewable infrastructure is much greater than the fuel saved.

Multiple wind and solar farms at different sites will to some extent smooth out the variability. A more involved reckoning of the supply capacity can be had by engaging in statistical calculations of ‘Capacity Credit’. This can be informative, but is only a rough cut at quantifying what is really of interest.

We explicitly model the electricity supply that given Wind and Solar scenarios would produce. This ‘renewable electricity’ time series can be examined in conjunction with the demand that existed over the same time period, and so give the ‘demand remainder’ on an hour-by-hour basis. Analysis of this demand remainder is superior because it empirically captures relationships between electricity demand and renewable supply (e.g. solar on hot days).

Development of a 50% renewables system can only occur as an evolution, and one that includes the demand patterns. Explicit modelling of renewable supply in the context of today’s demand profile shines light directly on the issues and opportunities that demand side evolution presents.

Smart grids and demand management – a necessary detour

As retail consumers it costs you or me the same to use our air conditioners (or heating) regardless of whether the wholesale price is $10 or $12,500 a MWh. Residential demand is disconnected from the supply market, except as a long-term average. This demand inelasticity is a problem crying out for solutions.

Enter stage left, Smart Grids and Smart Meters.

While these terms encompass various aspects, here we focus briefly on: (i) load control, and (ii) interval meters & Time of Use pricing; see the Demand Management discussion page for more extensive comments.

Through a ‘smart meter’, or perhaps simply via the internet, a control hub in your house can manage some appliances in an intelligent way. A pool pump, for example, would be off when the network was struggling. Water heating is the classic ‘off-peak’ appliance. More complicated, but essential, is a mechanism for the compressors (but not fans) of air-conditioners to be switched out for a few minutes when need be, and for the thermostat to ride modestly and intelligently across demand peaks.

Your motivation for smart operation of such appliances is simple; Time of Use metering. At peak times electricity will be more expensive; on a windy night it will be cheap. So called “Interval Metering” is a foundational functionality for a smart meter. While residential time-of-use pricing requires careful implementation, it should save you money if use at peak times is modest. What might be called the “Eco-Saver” electricity plan will allow you, essentially, to withdraw subsidy from those who are punishing the system at peak times by running four, perhaps inefficient, air conditioners flat out.

Smart grids and metering involve a world of detail at both the technical and policy levels. There is discussion and debate. In Victoria interval meters are being rolled out state-wide right now; in South Australia they are resisted. Digging into these issues became a distraction at OzEA, and for now we pull back to a watching brief. The key point is that development of technologies and interfaces for intelligent load control will lay the very foundations for further levels of demand side elasticity.

Big ideas: the ecology of energy and the variability gambit

Large, complex, efficient, systems are rarely imposed through a straightforward engineering plan, where the steps required are foreseen at the outset. The scale, efficiency and sophistication of our current fossil fuel based electricity system would seem fantastical to those who hauled coal in primitive mining operation at Ipswich or Collie a hundred years ago.

The variability problem can be engineered away with high levels of supply redundancy and proven but expensive or inefficient storage mechanisms. What can be done, and what responsible politicians, policy makers, board rooms and bankers, will do are two entirely different things. So far there is no ‘killer app’ on either the supply side (e.g. proven geothermal), or the demand side (e.g. cheap storage). But ‘killer apps’ can be weeds in an ecological context; evolution is not a one-step process nor is it fixed on only one possible outcome. Rather, many small steps act in concert to alter the very fabric of the system from which the next batch of little steps proceeds.

Starting with the system we have now, we ask: “What will happen as more renewable energy is included into the system?” (i.e. how might the system evolve, and what are the selective pressures that will induce change?)

With supply rendered less controllable by the addition of large-scale renewables, and with demand made more elastic in response to the cost of supply, the electricity market develops new niches for balancing supply and demand. Attention is too often focused on handling the occasional lean times (when the electricity price becomes high and dispatchable backup is required), when the real evolution will occur in the frequent plentiful times that come with large scale renewables; this presents enormous possibilities. With abundant electricity we can potentially displace more expensive transport fuels, and otherwise have wealth-producing industries and jobs spring up in the niches that a suitable energy ‘ecology’ (market) would provide.

Assuming we become a high penetration renewable country, to what extent will we look back in 30 or 50 years and see the value of a flexible and frequently abundant system outweighs the costs of maintaining ‘backup’ to cover the gaps? Thinking about this question requires looking past the next immediate roadblock.

The idea here, what we call the Variability Gambit, is to postulate that in time the variability problem is soluble, especially with a deepening of the electricity market and associated integration with the energy sector more generally.

The monster under the bed – how much will it cost?

At the simplest level (straight cost per MWh of electricity produced) the rule of thumb is wind power at twice the cost of coal power, while CSP is around four times as expensive — some forward estimates are more generous. Wind turbines are a mature technology and so the costs here can only be expected to reduce on a modest schedule (maybe a few percent a year), while the less-refined CSP might yet undergo stronger improvements as increased deployment occurs. A tax on carbon emissions would add to the scales, so roughly and at this basic level, costs are seen to be an uphill journey, but a gradual rather than a hopeless one.

The cost and engineering of large-scale renewable plant must include any associated transmission infrastructure. Further, the variability, and consequent need for storage or backup, introduces additional costs that make the task of an economic reconciliation more difficult again. Today’s renewable technologies, placed within todays systems, are not cost competitive as a fit-for-service means of replacing coal and gas.

Consider, as a thought experiment, imposing large scale renewables on the Australian system NOW, at the same time decommissioning our coal power assets and limiting the use of gas turbines (perhaps through a very high carbon price). Broader economic damage and electoral backlashes aside, lucrative opportunities would arise because of extreme variations in the wholesale electricity price. Storage of electricity using hydrogen or compressed air (as examples) would become profitable. Demand management technologies would develop rapidly. Much innovation would occur. After some decades of expensive electricity the system would again evolve into a form with cheap and plentiful electricity.

The question is, can we achieve much the same ends (more gradually) without draconian impositions and economic carnage? Forging that path is the task at hand, and the supply variation of renewables may itself be our most potent tool.

Open Science and the web-site

Doing Open Science (not just talking about it) is a parallel purpose of the OzEA project. In the beginning we imagined lots of community involvement in doing the Science, and now have more nuanced expectations. Certainly many valuable comments have been made, including a handful of really substantive contributions. We look forward to more of these as we knuckle down into 2011. Yet, this is not a blog, and we do not seek comment for the sake of comment, nor provide an arena for generic argument. Rather, the commenting system is largely a virtual lab-book that is open to all; it is a major part of our record keeping. And of course we continue to welcome critical comment, encouragement, focused questions, and the sharing of knowledge and experience.

Breadth first is the approach to analysis we take here, and so some of our analysis is not as sophisticated or refined as the more specialised work of others. What matters is whether an analysis is sufficient for the purposes it is put to. We welcome comparison and criticism in this regard, and are always grateful for nudges and prods into the issues and complications that careful work needs to take into consideration.

Concluding remarks

To mindfully anticipate the future electricity system is not straightforward. The basic difficulty in looking ahead multiple decades is that while some aspects are reasonably predictable, any number of less likely, and even improbable, technological and sociological developments could have significant impacts – if they come to pass. And some of these unlikely events will occur (play enough hands of poker and you will get a royal flush).

Moving into Round Two of data, analysis and modelling, we focus on the variability of supply that comes with high penetration renewables (wind and solar). While capturing the supply variability is a lot of work, it is also a relatively straightforward number crunching exercise. The real significance will be in the ‘demand remainder’, as so many of us seek to explore the implications, opportunities and consequences of increasing the level of renewable supply into the Australian electricity market.

A derisive term, “The Fake Fire Brigade”, has arisen to describe those seen as too optimistic or woolly in their claims for large-scale renewables. Here at OzEA we take a positivistic view; however, we are nobodies’ fire brigade. The wool-free version is simple enough: into the medium term at least, an Australian electricity system with an increasing penetration of renewables will continue to be underpinned with significant (fossil) fuelled supply, while demand side evolution will provide a more elastic response to supply variability. The rate of renewable rollout will be limited by real world costs, and driven by government support.

The importance of demand management to renewable integration is at once tenuous and profound. At the tenuous end, the ability to make modest adjustments to demand, especially in high load situations, provides some assistance with a generation mix that includes renewables. But it does not provide much help when there is little wind for several days in a system reliant on wind power. At the profound end are the pathways opened up for electricity system evolution in the decades to come as devices, houses, industries, suburbs and states interact dynamically with supply.

Implementation of smart grids must be undertaken with due care and forethought. It is easy to speculate about electric (or plug-in hybrid) cars; it is easy to note the long-term sense in houses being intelligently designed for space heating and cooling. It is not hard to see wind and solar power being integrated into the broader energy sector, perhaps via Hydrogen production. While all these points remain vague or speculative, it is simple deduction that building to high penetrations of wind and solar power will involve these sorts of developments.

The question, in the end, is this: can we intelligently and responsibly nurture the necessary evolution in the way our electricity system works? The next step to coherently addressing this question is a solid quantitative grip on the supply variability. As we work this through, it is our goal and commitment to communicate the analysis and its interpretation in as open and useful a way as we can.

December 8, 2010

SNE 2060 – assessment of energy demand

Filed under: Energy Demand — buildeco @ 3:26 pm

by Barry Brook

In a previous post  – TCASE #The energy demand equation to 2050 — I estimated a mid-century global primary energy demand of ~1000 EJ (see here for definitions). But it may as well have been 2060; the actual date that this global demand will be reached is obviously uncertain, but will likely occur between 2040 – 2070 given current levels of energy growth. This figure was also arrived at by Moriarty & Honery (2009) based on a meta-review of the literature. Let’s use this as a working figure.

Table 1 shows world electricity demand in 2008 based on IEA data from non-fossil-fuel sources, plus world total including fossil fuel generation. Note that a terawatt year (TWyr) is the same as 1000 GW of constant power. So nuclear power, in 2008, delivered an average of 312 GWe, and global electricity generation was 2,313 GWe.


Table 1


Table 2 shows a hypothetical 2060 demand scenario, which uses the forecast values from Trainer (2010) for energy efficiency/conservation, direct electricity, transport electricity (e.g., battery electric vehicles) and liquid fuels (see also this shorter, free-online piece); however, my estimate of the source of liquid fuels is different (see explanation below).

Note that in Table 2 there is a projected overall 3.8-fold increase in world electricity use between 2008 and 2060, compared to an approximate doubling of overall primary energy usage (today we use ~500 EJ from all sources). Both of these figures  – for electricity and primary energy growth — are in agreement with the estimates of Starr (1993).


Table 2


Trainer assumes that up to 50 EJ/yr will come from biomass-derived cellulosic ethanol (requiring 1 billion ha and 7 t/ha yield); he also leaves an unmet deficit of 12 EJ/yr. I more conservatively assume a lower contribution from biofuels of 15 EJ/yr (300 million ha). The remaining 47 EJ/yr of primary energy from liquid fuels is assumed in my scenario to come from synfuels (e.g., hydrogen and hydrogen-nitrogen derivatives such as ammonia or hydrazine), which are synthesized using energy from nuclear fission sources (Forsberg, 2009).

With reference to the detailed discussion of the synfuel manufacturing in the book “The Nuclear Imperative” by SCGI member Dr Jeff Eerkens (2006, pg 54-56), I assume:

(i) One third of hydrogen (~16 EJ) will come from electrolysis at a 30% electricity-to-hydrogen conversion efficiency; this will require 52 EJ of electricity input.

(ii) Two thirds of the hydrogen (~32 EJ) will come from direct nuclear heat via high-temperature sulphur-iodine-catalysed thermochemical water cracking, at a 60% heat-to-hydrogen conversion efficiency. This thermal energy requirement is the equivalent of 550 GW of electricity plant, if one assumes a 33% Carnot-cycle efficiency that is typical for thermal-to-electrical conversion in fission reactors.

The ratio of direct stationary/transport electricity use to that used in synfuel manufacture (electrolysis and nuclear heat) in Table 2 is 0.24. By comparison, Eerkens (2006, pg 135) estimated a final ratio of 0.4, but did not include battery electric vehicles or biofuels.

The 116 (direct) and 92 (transport) EJ electricity figures come from Trainer (2010). If you assumed that all of the 277 EJ of electricity in Table 2 was generated at a thermal-to-electrical conversion of 33%, then this is 831 EJ of primary energy. This would imply efficiency/conservation savings of 17% on the 1000 EJ original demand target.


I hope to use the above 2060 scenario in an upcoming paper that I am currently writing, and so would appreciate any feedback/constructive criticism from readers.

In the next SNE2060 post, I’ll consider my most realistic assessment for the multi-source energy supply equation for 2060 which delivers 277 EJ of electricity — from both nuclear and non-nuclear sources.

Create a free website or blog at